Science & Tech

Francis William Aston

British physicist and chemist
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Print
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Francis William Aston.
Francis William Aston
Born:
Sept. 1, 1877, Harborne, Birmingham, Eng.
Died:
Nov. 20, 1945, Cambridge, Cambridgeshire (aged 68)
Awards And Honors:
Nobel Prize (1922)
Subjects Of Study:
isotope
mass spectrometry
nuclide

Francis William Aston (born Sept. 1, 1877, Harborne, Birmingham, Eng.—died Nov. 20, 1945, Cambridge, Cambridgeshire) was a British physicist who won the Nobel Prize for Chemistry in 1922 for his discovery of a large number of isotopes (atoms of the same element that differ in mass), using a mass spectrometer, and for formulating the “whole number rule” that isotopes have masses that are integer values of the mass of the hydrogen atom. The mass spectrometer is a device that separates atoms or molecular fragments of different mass and measures those masses with remarkable accuracy. It is widely used in geology, chemistry, biology, and nuclear physics.

Aston was trained as a chemist, but, upon the rebirth of physics following the discovery of X-rays in 1895 and of radioactivity in 1896, he began in 1903 to study the creation of X-rays by the flow of current through a gas-filled tube. In 1910 he became an assistant to Sir J.J. Thomson at Cambridge, who was investigating positively charged rays emanating from gaseous discharges. From experiments with neon, during Aston’s assistantship Thomson obtained the first evidence for isotopes among the stable (nonradioactive) elements. Aston initially thought that he had discovered a new element, similar to neon, which he called “meta-neon.” However, his research of meta-neon was interrupted by World War I, during which he worked at the Royal Aircraft Establishment at Farnborough.

Italian-born physicist Dr. Enrico Fermi draws a diagram at a blackboard with mathematical equations. circa 1950.
Britannica Quiz
Physics and Natural Law

After World War I Aston constructed a new type of positive-ray apparatus, which he named a mass spectrograph and which was later called the mass spectrometer. In 1913 English chemist Frederick Soddy had postulated that certain elements might exist in forms that he called isotopes that differ in atomic weight while being indistinguishable and inseparable chemically. Aston used the mass spectrograph to show that not only neon but also many other elements are mixtures of isotopes. Aston’s achievement is illustrated by the fact that he discovered 212 of the 287 naturally occurring isotopes.

This article was most recently revised and updated by Encyclopaedia Britannica.