Science & Tech

William Fowler

American astrophysicist
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites
Britannica Websites
Articles from Britannica Encyclopedias for elementary and high school students.
Print
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites
Britannica Websites
Articles from Britannica Encyclopedias for elementary and high school students.
Also known as: William Alfred Fowler
In full:
William Alfred Fowler
Born:
August 9, 1911, Pittsburgh, Pennsylvania, U.S.
Died:
March 14, 1995, Pasadena, California (aged 83)
Awards And Honors:
Nobel Prize (1983)
National Medal of Science (1974)
Subjects Of Study:
nucleosynthesis

William Fowler (born August 9, 1911, Pittsburgh, Pennsylvania, U.S.—died March 14, 1995, Pasadena, California) was an American nuclear astrophysicist who, with Subrahmanyan Chandrasekhar, won the Nobel Prize for Physics in 1983 for his role in formulating a widely accepted theory of element generation.

Fowler studied at the Ohio State University (B.S., 1933) and at the California Institute of Technology (Ph.D., 1936), where he became an assistant professor in 1939 and a full professor in 1946. His theory of element generation, which he developed with Sir Fred Hoyle, Margaret Burbidge, and Geoffrey Burbidge in the 1950s, suggests that in stellar evolution elements are synthesized progressively from light elements to heavy ones, in nuclear reactions that also produce light and heat. With the collapse of more massive stars, the explosive rebound known as supernova occurs; according to theory, this phase makes possible the synthesis of the heaviest elements.

Fowler also worked in radio astronomy, proposing with Hoyle that the cores of radio galaxies are collapsed “superstars” emitting strong radio waves and that quasars are larger versions of these collapsed superstars.

Fowler received the National Medal of Science (1974) and the Legion of Honour (1989).

This article was most recently revised and updated by Encyclopaedia Britannica.