Science & Tech

colour vision

verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Print
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

colour vision, ability to distinguish among various wavelengths of light waves and to perceive the differences as differences in hue. The normal human eye can discriminate among hundreds of such bands of wavelengths as they are received by the colour-sensing cells (cones) of the retina. There are three types of cones, each of which contains a distinctive type of pigment; one cone absorbs longer wavelengths (red light), another middle wavelengths (green light), and the third type shorter wavelengths (blue-violet light). A given colour stimulates all three types of receptors with varying effectiveness, and the pattern of these responses determines the colour perceived. In 1986 researchers identified the genes that correspond to the red, green, and blue pigments.

This article was most recently revised and updated by Kara Rogers.