rock
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://64.176.36.150/science/gneiss
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites
Print
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://64.176.36.150/science/gneiss
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites

gneiss, metamorphic rock that has a distinct banding, which is apparent in hand specimen or on a microscopic scale. Gneiss usually is distinguished from schist by its foliation and schistosity; gneiss displays a well-developed foliation and a poorly developed schistosity and cleavage. For the casual student, it is convenient to think of a gneiss as a rock with parallel, somewhat irregular banding which has little tendency to split along planes. In contrast, schist typically is composed of platy minerals with a parallel to subparallel geometric orientation that gives the rock a tendency to split along planes; banding is usually not present.

Gneiss is medium- to coarse-grained and may contain abundant quartz and feldspar, which some petrographers regard as essential components. The banding is usually due to the presence of differing proportions of minerals in the various bands; dark and light bands may alternate because of the separation of mafic (dark) and felsic (light) minerals. Banding can also be caused by differing grain sizes of the same minerals. The mineralogy of a particular gneiss is a result of the complex interaction of original rock composition, pressure and temperature of metamorphism, and the addition or loss of components.

Basalt sample returned by Apollo 15, from near a long sinous lunar valley called Hadley Rille.  Measured at 3.3 years old.
Britannica Quiz
(Bed) Rocks and (Flint) Stones

Gneiss is the principal rock over extensive metamorphic terrains. The banding may be oriented nearly parallel to the Earth’s surface (horizontal dip) or may have a steep dip. Such orientations can be interpreted in terms of the stresses that prevailed during the formation of the rock.

Gneiss can be classified on the basis of minerals that are present, presumed formational processes, chemical composition, or probable parent material. Orthogneiss is formed by the metamorphism of igneous rocks; paragneiss results from the metamorphism of sedimentary rocks. Pencil gneiss contains rod-shaped individual minerals or segregations of minerals, and augen gneiss contains stubby lenses of feldspar and quartz having the appearance of eyes scattered through the rock. The identification of gneiss as a product of metamorphism is usually clear, but some primary gneiss can be formed by the flow of a viscous, partially crystallized magma.

This article was most recently revised and updated by Richard Pallardy.