Eclipsing binaries
An eclipsing binary consists of two close stars moving in an orbit so placed in space in relation to Earth that the light of one can at times be hidden behind the other. Depending on the orientation of the orbit and sizes of the stars, the eclipses can be total or annular (in the latter, a ring of one star shows behind the other at the maximum of the eclipse) or both eclipses can be partial. The best known example of an eclipsing binary is Algol (Beta Persei), which has a period (interval between eclipses) of 2.9 days. The brighter (B8-type) star contributes about 92 percent of the light of the system, and the eclipsed star provides less than 8 percent. The system contains a third star that is not eclipsed. Some 20 eclipsing binaries are visible to the naked eye.
The light curve for an eclipsing binary displays magnitude measurements for the system over a complete light cycle. The light of the variable star is usually compared with that of a nearby (comparison) star thought to be fixed in brightness. Often, a deep, or primary, minimum is produced when the component having the higher surface brightness is eclipsed. It represents the total eclipse and is characterized by a flat bottom. A shallower secondary eclipse occurs when the brighter component passes in front of the other; it corresponds to an annular eclipse (or transit). In a partial eclipse neither star is ever completely hidden, and the light changes continuously during an eclipse.
The shape of the light curve during an eclipse gives the ratio of the radii of the two stars and also one radius in terms of the size of the orbit, the ratio of luminosities, and the inclination of the orbital plane to the plane of the sky.
If radial-velocity curves are also available—i.e., if the binary is spectroscopic as well as eclipsing—additional information can be obtained. When both velocity curves are observable, the size of the orbit as well as the sizes, masses, and densities of the stars can be calculated. Furthermore, if the distance of the system is measurable, the brightness temperatures of the individual stars can be estimated from their luminosities and radii. All of these procedures have been carried out for the faint binary Castor C (two red-dwarf components of the six-member Castor multiple star system) and for the bright B-type star Mu Scorpii.
Close stars may reflect each other’s light noticeably. If a small, high-temperature star is paired with a larger object of low surface brightness and if the distance between the stars is small, the part of the cool star facing the hotter one is substantially brightened by it. Just before (and just after) secondary eclipse, this illuminated hemisphere is pointed toward the observer, and the total light of the system is at a maximum.
The properties of stars derived from eclipsing binary systems are not necessarily applicable to isolated single stars. Systems in which a smaller, hotter star is accompanied by a larger, cooler object are easier to detect than are systems that contain, for example, two main-sequence stars (see below Hertzsprung-Russell diagram). In such an unequal system, at least the cooler star has certainly been affected by evolutionary changes, and probably so has the brighter one. The evolutionary development of two stars near one another does not exactly parallel that of two well-separated or isolated ones.
Eclipsing binaries include combinations of a variety of stars ranging from white dwarfs to huge supergiants (e.g., VV Cephei), which would engulf Jupiter and all the inner planets of the solar system if placed at the position of the Sun.
Some members of eclipsing binaries are intrinsic variables, stars whose energy output fluctuates with time (see below Variable stars). In many such systems, large clouds of ionized gas swirl between the stellar members. In others, such as Castor C, at least one of the faint M-type dwarf components might be a flare star, one in which the brightness can unpredictably and suddenly increase to many times its normal value (see below Peculiar variables).