linear algebra, Branch of algebra concerned with methods of solving systems of linear equations; more generally, the mathematics of linear transformations and vector spaces. “Linear” refers to the form of the equations involved—in two dimensions, ax + by = c. Geometrically, this represents a line. If the variables are replaced by vectors, functions, or derivatives, the equation becomes a linear transformation. A system of equations of this type is a system of linear transformations. Because it shows when such a system has a solution and how to find it, linear algebra is essential to the theory of mathematical analysis and differential equations. Its applications extend beyond the physical sciences into, for example, biology and economics.
linear algebra Article
linear algebra summary
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies.
Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Below is the article summary. For the full article, see linear algebra.