electronics
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Print
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

amplifier, in electronics, device that responds to a small input signal (voltage, current, or power) and delivers a larger output signal that contains the essential waveform features of the input signal. Amplifiers of various types are widely used in such electronic equipment as radio and television receivers, high-fidelity audio equipment, and computers. Amplifying action can be provided by electromechanical devices (e.g., transformers and generators) and vacuum tubes, but most electronic systems now employ solid-state microcircuits as amplifiers. Such an integrated circuit consists of many thousands of transistors and related devices on a single tiny silicon chip.

A single amplifier is usually insufficient to raise the output to the desired level. In such cases the output of the first amplifier is fed into a second, whose output is fed to a third, and so on, until the output level is satisfactory. The result is cascade, or multistage amplification. Long-distance telephone, radio, television, electronic control and measuring instruments, radar, and countless other devices all depend on this basic process of amplification. The overall amplification of a multistage amplifier is the product of the gains of the individual stages.

More From Britannica
radio technology: Amplifiers

There are various schemes for the coupling of cascading electronic amplifiers, depending upon the nature of the signal involved in the amplification process. Solid-state microcircuits have generally proved more advantageous than vacuum-tube circuits for the direct coupling of successive amplifier stages. Transformers can be used for coupling, but they are bulky and expensive.

An electronic amplifier can be designed to produce a magnified output signal identical in every respect to the input signal. This is linear operation. If the output is altered in shape after passing through the amplifier, amplitude distortion exists. If the amplifier does not amplify equally at all frequencies, the result is called frequency distortion, or discrimination (as in emphasizing bass or treble sounds in music recordings).

When the power required from the output of the amplifier is so large as to preclude the use of electronic devices, dynamoelectric and magnetic amplifiers find wide application.