Science & Tech

Scientific Revolution

verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Copernican system
Copernican system
Date:
c. 1400 - c. 1690
Location:
Europe
Context:
Reformation
Renaissance
Top Questions

What is the Scientific Revolution?

How is the Scientific Revolution connected to the Enlightenment?

What did the Scientific Revolution lead to?

Scientific Revolution, drastic change in scientific thought that took place during the 16th and 17th centuries. A new view of nature emerged during the Scientific Revolution, replacing the Greek view that had dominated science for almost 2,000 years. Science became an autonomous discipline, distinct from both philosophy and technology, and it came to be regarded as having utilitarian goals. By the end of this period, it may not be too much to say that science had replaced Christianity as the focal point of European civilization. Out of the ferment of the Renaissance and Reformation there arose a new view of science, bringing about the following transformations: the reeducation of common sense in favour of abstract reasoning; the substitution of a quantitative for a qualitative view of nature; the view of nature as a machine rather than as an organism; the development of an experimental, scientific method that sought definite answers to certain limited questions couched in the framework of specific theories; and the acceptance of new criteria for explanation, stressing the “how” rather than the “why” that had characterized the Aristotelian search for final causes.

The growing flood of information that resulted from the Scientific Revolution put heavy strains upon old institutions and practices. It was no longer sufficient to publish scientific results in an expensive book that few could buy; information had to be spread widely and rapidly. Natural philosophers had to be sure of their data, and to that end they required independent and critical confirmation of their discoveries. New means were created to accomplish these ends. Scientific societies sprang up, beginning in Italy in the early years of the 17th century and culminating in the two great national scientific societies that mark the zenith of the Scientific Revolution: the Royal Society of London for Improving Natural Knowledge, created by royal charter in 1662, and the Académie des Sciences of Paris, formed in 1666. In these societies and others like them all over the world, natural philosophers could gather to examine, discuss, and criticize new discoveries and old theories. To provide a firm basis for these discussions, societies began to publish scientific papers. The old practice of hiding new discoveries in private jargon, obscure language, or even anagrams gradually gave way to the ideal of universal comprehensibility. New canons of reporting were devised so that experiments and discoveries could be reproduced by others. This required new precision in language and a willingness to share experimental or observational methods. The failure of others to reproduce results cast serious doubts upon the original reports. Thus were created the tools for a massive assault on nature’s secrets.

Astronomy

The Scientific Revolution began in astronomy. Although there had been earlier discussions of the possibility of Earth’s motion, the Polish astronomer Nicolaus Copernicus was the first to propound a comprehensive heliocentric theory equal in scope and predictive capability to Ptolemy’s geocentric system. Motivated by the desire to satisfy Plato’s dictum, Copernicus was led to overthrow traditional astronomy because of its alleged violation of the principle of uniform circular motion and its lack of unity and harmony as a system of the world. Relying on virtually the same data as Ptolemy had possessed, Copernicus turned the world inside out, putting the Sun at the centre and setting Earth into motion around it. Copernicus’s theory, published in 1543, possessed a qualitative simplicity that Ptolemaic astronomy appeared to lack. To achieve comparable levels of quantitative precision, however, the new system became just as complex as the old. Perhaps the most revolutionary aspect of Copernican astronomy lay in Copernicus’s attitude toward the reality of his theory. In contrast to Platonic instrumentalism, Copernicus asserted that to be satisfactory astronomy must describe the real, physical system of the world.

The reception of Copernican astronomy amounted to victory by infiltration. By the time large-scale opposition to the theory had developed in the church and elsewhere, most of the best professional astronomers had found some aspect or other of the new system indispensable. Copernicus’s book De revolutionibus orbium coelestium libri VI (“Six Books Concerning the Revolutions of the Heavenly Orbs”), published in 1543, became a standard reference for advanced problems in astronomical research, particularly for its mathematical techniques. Thus, it was widely read by mathematical astronomers, in spite of its central cosmological hypothesis, which was widely ignored. In 1551 the German astronomer Erasmus Reinhold published the Tabulae prutenicae (“Prutenic Tables”), computed by Copernican methods. The tables were more accurate and more up-to-date than their 13th-century predecessor and became indispensable to both astronomers and astrologers.

During the 16th century the Danish astronomer Tycho Brahe, rejecting both the Ptolemaic and Copernican systems, was responsible for major changes in observation, unwittingly providing the data that ultimately decided the argument in favour of the new astronomy. Using larger, stabler, and better calibrated instruments, he observed regularly over extended periods, thereby obtaining a continuity of observations that were accurate for planets to within about one minute of arc—several times better than any previous observation. Several of Tycho’s observations contradicted Aristotle’s system: a nova that appeared in 1572 exhibited no parallax (meaning that it lay at a very great distance) and was thus not of the sublunary sphere and therefore contrary to the Aristotelian assertion of the immutability of the heavens; similarly, a succession of comets appeared to be moving freely through a region that was supposed to be filled with solid, crystalline spheres. Tycho devised his own world system—a modification of Heracleides’—to avoid various undesirable implications of the Ptolemaic and Copernican systems.

At the beginning of the 17th century, the German astronomer Johannes Kepler placed the Copernican hypothesis on firm astronomical footing. Converted to the new astronomy as a student and deeply motivated by a neo-Pythagorean desire for finding the mathematical principles of order and harmony according to which God had constructed the world, Kepler spent his life looking for simple mathematical relationships that described planetary motions. His painstaking search for the real order of the universe forced him finally to abandon the Platonic ideal of uniform circular motion in his search for a physical basis for the motions of the heavens.

Get a Britannica Premium subscription and gain access to exclusive content. Subscribe Now

In 1609 Kepler announced two new planetary laws derived from Tycho’s data: (1) the planets travel around the Sun in elliptical orbits, one focus of the ellipse being occupied by the Sun; and (2) a planet moves in its orbit in such a manner that a line drawn from the planet to the Sun always sweeps out equal areas in equal times. With these two laws, Kepler abandoned uniform circular motion of the planets on their spheres, thus raising the fundamental physical question of what holds the planets in their orbits. He attempted to provide a physical basis for the planetary motions by means of a force analogous to the magnetic force, the qualitative properties of which had been recently described in England by William Gilbert in his influential treatise, De Magnete, Magneticisque Corporibus et de Magno Magnete Tellure (1600; “On the Magnet, Magnetic Bodies, and the Great Magnet of the Earth”). The impending marriage of astronomy and physics had been announced. In 1618 Kepler stated his third law, which was one of many laws concerned with the harmonies of the planetary motions: (3) the square of the period in which a planet orbits the Sun is proportional to the cube of its mean distance from the Sun.

A powerful blow was dealt to traditional cosmology by Galileo Galilei, who early in the 17th century used the telescope, a recent invention of Dutch lens grinders, to look toward the heavens. In 1610 Galileo announced observations that contradicted many traditional cosmological assumptions. He observed that the Moon is not a smooth, polished surface, as Aristotle had claimed, but that it is jagged and mountainous. Earthshine on the Moon revealed that Earth, like the other planets, shines by reflected light. Like Earth, Jupiter was observed to have satellites; hence, Earth had been demoted from its unique position. The phases of Venus proved that that planet orbits the Sun, not Earth.