Table of Contents
References & Edit History Quick Facts & Related Topics

Antagonism

Although mutualisms are common in all biological communities, they occur side by side with a wide array of antagonistic interactions. As life has evolved, natural selection has favoured organisms that are able to efficiently extract energy and nutrients from their environment. Because organisms are concentrated packages of energy and nutrients in themselves, they can become the objects of antagonistic interactions. Moreover, because resources often are limited, natural selection also has favoured the ability of organisms to compete against one another for them. The result has been the evolution of a great diversity of lifestyles. This diversity can be categorized in any number of ways, but the edges of all the categories blend with one another. Evolution continues to mix all the different kinds of interspecific interactions into novel ways of life.

One way of understanding the diversity of antagonistic interactions is through the kinds of hosts or prey that species attack. Carnivores attack animals, herbivores attack plants, and fungivores attack fungi. Other species are omnivorous, attacking a wide range of plants, animals, and fungi. Regardless of the kinds of foods they eat, however, there are some general patterns in which species interact. Parasitism, grazing, and predation are the three major ways in which species feed on one another. The parasite lives on and feeds off its host, usually decreasing the host’s ability to survive but not killing it outright. Grazing species are not as closely tied to their food source as parasites and often vary their diet between two or more species without directly killing them. Predators, however, capture and kill members of other species for food.

Parasitism

Types of parasites

Parasitism is thought to be the most common way of life, and parasitic organisms may account for as many as half of all living species. Examples include pathogenic fungi and bacteria, plants that tap into the stems or roots of other plants, insects that as larvae feed on a single plant, and parasitic wasps. Parasites live in or on a single host throughout either a stage in their lives or their entire life span, thereby decreasing the survival or reproduction of their hosts. This lifestyle has arisen many times throughout evolution. The most species-rich groups of organisms are parasites, which, in becoming specialized to live off their hosts alone, eventually become genetically distinct from their species, sometimes to the degree that they are considered a new species (speciation).

One common type of parasite is the parasitoid, an insect whose larvae feed and develop within or on the bodies of other arthropods. Each parasitoid larva develops on a single individual and eventually kills that host. Most parasitoids are wasps, but some flies and a small number of beetles, moths, lacewings, and even one caddisfly species have evolved to be parasitoids. Parasitoids alone number about 68,000 named species, and most parasitoids have yet to be named and described. Realistic estimates of the total number of described and undescribed parasitoid species are about 800,000.

The number of species of insects that develop as nymphs or larvae on a single plant host may outnumber the parasitoids. There is currently a great deal of debate concerning the number of species worldwide, and this debate centres on the number of plant-feeding insect species, many of which inhabit the canopies of tropical trees. These species have been almost impossible to collect until recently when techniques allowing access to the canopies have been adapted from mountain-climbing methods. All ecologists and systematists working on these estimates agree that there are at least a few million plant-feeding insect species, but the estimates range from 2 to 30 million.

Estimates of the number of pathogenic fungi, parasitic nematodes, and other parasitic groups also have increased as ecological and molecular studies are revealing many previously unrecognized species. Continued work on biodiversity worldwide will allow better estimates to be made of the Earth’s inventory of species, which is a major prerequisite for understanding the role of parasites in the organization of communities and in the conservation of diversity.

Specialization in parasites

It is now evident that the parasitic lifestyle often favours extreme specialization to a single host or a small group of hosts. Living for a long period of time on a single host, a parasite must remain attached within or on its host, avoid the defenses of its host, and obtain all its nutrition from that host. Unlike grazers or predators, parasites cannot move from host to host, supplementing their diet with a variety of foods.

Estimates of the number of species worldwide have risen sharply in recent decades owing to research revealing parasitic species to be much more specific to one host species than previously realized. What once may have been considered a single parasitic species attacking many different host species has often turned out to be a group of very similar, yet distinct, parasitic species, each specialized to its own host. This speciation occurs because different parasitic populations become adapted to living on different hosts and coping with the defenses of these hosts. Over time, many of these different parasite populations evolve into genetically distinct species. It is through the specialization of individuals of a species onto different hosts, ultimately resulting in speciation, that parasitism appears to have become the most common way of life on Earth.

For example, swallowtail butterflies (Papilio) include more than 500 species worldwide. In most species an adult female lays her eggs on a host plant, and, after they hatch, the caterpillars complete their development by feeding parasitically on that plant. In North America there are two groups of these butterflies that have evolved to use different hosts: the tiger swallowtail group and the Old World swallowtail group (Papilio machaon). In the Old World swallowtail group are several species that feed on plants in the carrot family Apiaceae (also called Umbelliferae), with different populations feeding on different plant species. However, one species within this group, the Oregon swallowtail (Papilio oregonius), has become specialized to feed on tarragon sagebrush (Artemisia dracunculus), which is in the plant family Asteracaea (Compositae of some sources). Among the tiger swallowtail group, various members have become specialized to different plant hosts. The eastern tiger swallowtail (Papilio glaucus) has a long list of recorded hosts, but it is now known that the northern and southern populations are adapted to different plant species, and these populations cannot develop on the others’ hosts.

Alternation among hosts

Although many parasitic species complete all developmental stages on a single host individual, thousands of other parasitic species alternate between two or more host species, specializing on a different host species at each developmental stage. Many parasites, from a diverse array of species such as certain viruses, flatworms, nematodes, and aphids, specialize on different host species at different stages of development. Among aphids alone at least 2,700 species alternate among hosts.

Parasites have evolved by three major evolutionary routes to alternate among two or more hosts. Some parasite species have evolved to alternate between their final host and an intermediate host, or vector, that transfers the parasite from one final host to another: the malarial parasite Plasmodium falciparum alternates between a final human host and an intermediate mosquito host by which the parasite is transferred from one person to another. The parasite uses the mosquito as a mobile hypodermic syringe. Examples of a similar kind of transmission between a final host and an intermediate host with piercing mouthparts occur in many other species. Viruses, rickettsias, protozoa, and nematodes all have species that are transmitted between vertebrates through biting flies. Some viruses and other parasites are similarly transmitted between plant species by aphids, whose piercing mouthparts transmit the parasites directly into plant tissues while the aphids are feeding.

Other parasites alternate between a host and the predator that eats it. These parasites have turned an evolutionary problem (being killed along with their host) into an evolutionary opportunity (being transferred to the predator and continuing to feed). As it develops, the parasite attacks hosts higher in the food chain, alternating between herbivore and predator or between an intermediate and a top predator in the food chain. Many parasites alternate between snails or other invertebrates and vertebrate predators that feed upon these invertebrates; others alternate among vertebrate species. The pork tapeworm (Taenia solium), for example, alternates between pigs and humans in societies in which improperly cooked pork is eaten.

Still other parasites employ wings, wind, or water to alternate between hosts. Many aphid species alternate between a summer host and a winter host by producing winged individuals that fly to the new host. Rust fungi such as wheat stem rust can be carried between hosts by wind currents, and the parasite Schistosoma mansoni, which causes the disease schistosomiasis, alternates between Biomphalaria snails and humans by moving through water.

The different ways by which host species are linked to parasites contribute to the complex web of interactions that shape the structure of communities. The effect of parasitism on the dynamics of populations and the organization of communities is still one of the most underexplored topics in ecology.