Recent extinction rates
To what extent has modern human activity increased extinction rates above the background rate? This discussion presents five well-known case histories of recent extinctions. From them, some general features can be deduced about recent extinctions that also provide clues to the future.
Pacific island birds
Polynesians reached such remote Pacific islands as the Hawaiian Islands, New Zealand, and Easter Island—Earth’s last habitable areas for settlement—within the past 2,000 years. Over that period they left unambiguous evidence that their activity caused many species of birds to become extinct. The bones of many species persist into, but not through, archaeological layers that also contain evidence of human presence. No species is known to have disappeared in the longer intervals before first contact. The Polynesian settlers likely ate the large, probably unwary, and often flightless species. They also introduced pigs and rats to islands far too remote to have acquired native land mammals (see invasive species). The rats also would have found the native birds, their eggs, and their young to be easy pickings, and the pigs would have destroyed the ground cover of the forests. With only Stone Age technology, the settlers may have exterminated as many as 2,000 bird species, some 17 percent of the world total. Locally, they often exterminated all the bird species they encountered.
In the Hawaiian Islands, for example, scientists have described 43 species only from their bones, a number that has increased as new extinct species have been discovered. Because bird bones are fragile and easily destroyed, all the extinct species may never be found. Nevertheless, the number that remain unknown can be calculated.
Suppose that every Hawaiian bird species that survived to be collected by naturalists since the 1800s were also found as bones. In that case, one would say that the bone record is complete. On the other hand, if only half the species that survived to modern times were also known from bones, one would know that the record is half complete. If this second case were true, then, by extension, only half the species that became extinct by modern times should be known from bones. Half turns out to be about right—scientists have estimated 40 unknown species, for a total number of extinctions of 83.
The British explorer James Cook found the Hawaiian Islands and their Polynesian settlers in 1778. With the peace that followed Great Britain’s defeat of France in 1815, Cook’s descriptions of whaling opportunities in the region led to increasing contact with Europe and North America. New colonists not only depleted the whales but also introduced cattle and goats to the islands for food. Like pigs, these alien herbivores destroyed native plants and greatly reduced natural habitats. Naturalists of the time described 18 bird species that did not survive this onslaught, so the total count of extinctions rises to 101. This still is an underestimate, because the 19th-century naturalists missed some species. On Molokai, for example, they recorded hearing a rail, but there is no specimen of it.
On the Hawaiian Islands today there remain a dozen species that are so extremely rare that the chances of saving them are poor; some may already be extinct. Another dozen species are rare and have uncertain futures. Of the estimated 136 bird species that lived on the islands before human settlement, only 11 are common enough to suggest that their future is secure.
If such estimates are expanded across the eastern Pacific, it will appear that the Polynesians exterminated 500–1,000 species of birds. But it is also possible to take a different approach, one that considers what species should occur on every island in the group. Rails, for example, seem very adept at reaching even such remote islands as Henderson and Lisianski. Where scientists have searched for bird bones, they have found fossil rails. It seems likely that every sufficiently large island probably housed a unique species of rail. Most of these islands, but not the Hawaiian Islands, which were likely too remote, also housed unique species of doves and parrots, most of which are now extinct. Even before small-bodied species are counted, such studies suggest that Polynesians exterminated at least 1,000 species of birds. Some scientists put the number at 2,000 or even more.
The Polynesian and European colonizations of the Pacific exterminated species other than birds, of course. The Hawaiian Islands have 980 native plants. Of these, 84 are now extinct, and another 133 have wild populations that number fewer than 100 individuals each. It may never be known how many other species were exterminated as the Polynesians cleared land for their crops and likely burned dry forests.
In the 20th century, misguided individuals on a number of the Pacific islands introduced an African land snail, Achatina fulica, for food. It became a pest. So, like the song about the old woman who swallowed a fly, and then a spider to catch it, and so forth, a predatory snail, Euglandina rosea, was released to control the Achatina. The predatory snail preferred native Achatinella and Partula snails instead, driving many species to extinction.
There is nothing special about the islands of the Pacific that makes their animals and plants prone to extinction. The most famous recent extinction of all, the extermination of the dodo (Raphus cucullatus) by humans and their introduced animals, was one of 33 species of birds, 30 species of land snails, and 11 species of reptiles lost from Mauritius, Rodrigues, and Réunion in the Indian Ocean in the past three centuries. Over the same period, St. Helena and Madeira in the Atlantic Ocean lost 36 species of land snails as a result of human activity. These island extinctions raise an obvious question: Are extinctions predominantly on islands and not continents? Although the disappearance of island species does demonstrate a pattern of sensitivity to becoming extinct, the next example shows the answer to the question above to be “no.”
Flowering plants
A small area at the southern tip of Africa houses an extraordinarily rich and unusual variety of plants. It has several types of vegetation, of which the fynbos (a species-rich scrubland of southwestern South Africa) contributes the most species. Of roughly 8,500 species, 36 have become extinct in the past century, and another 1,700 species are threatened. (In the field of conservation, the term threatened has a specific technical meaning. It comes from the IUCN Red List, the International Union for Conservation of Nature’s list of species that are at risk of extinction. A species listed as “threatened” has a high probability of extinction in the wild within the next few decades if nothing is done to prevent it.) For the fynbos, invasive plants—particularly various species of Australian wattle trees (acacia)—and the conversion of natural areas to agriculture are the two major causes of species extinction and endangerment.
Freshwater mussels and clams
Terrestrial ecosystems are far from being the only places where recent extinctions have occurred. The Mississippi and St. Lawrence river basins were home to 297 North American species of the bivalve mollusk families Unionidae and Margaritiferidae. Of these, 21 have become extinct in the past century, and 70 percent are in danger of extinction. During this same period, engineers have extensively dammed and channeled North America’s rivers. The Tennessee River, for example, is dammed along its entire length from Knoxville, Tenn., until it joins the Ohio River. Changing flowing rivers to effectively static reservoirs completely changes the habitats of the species that live in them. In addition, poor farming practices have greatly increased nutrient and pesticide runoff from croplands, and sewage effluent and runoff from cities and industrial animal farms have exacerbated the problem. Freshwater bivalves are sessile filter feeders and very sensitive to changes in water quality.
Many of these bivalve species in their juvenile stages parasitize freshwater fish and so are dependent on their survival as well. Some freshwater bivalves are harvested for the cultured pearl trade. And, as if these were not sufficient threats, two introduced species, the Asian clam (Corbicula fluminea) and the zebra mussel (Dreissena polymorpha), have rapidly expanded their North American ranges, outcompeting native species.
Freshwater fish
Some of the changes to North America’s rivers that threaten their native bivalves have also seriously harmed the continent’s freshwater fish. Of the approximately 950 species of freshwater fish of the United States, Canada, and Mexico, about 57 have become extinct since 1898. They have disappeared from a wide range of habitats—northern lakes, southern streams, wetlands, and particularly springs. Springs are often small, isolated habitats, which favour the evolution of unique species, but those features make the habitats extremely vulnerable to human disturbance. Introduced species—from the stocking of fish and frogs for food and of fish for sport and from accidental aquarium releases—are also factors in numerous extinctions. The introduced species can outcompete native fish, sometimes feed on them, and in some cases hybridize with them. Hybridization may seem a surprising cause of extinction. Populations that have evolved in isolation, however, may no longer retain their morphologic and genetic distinctiveness when mixed with similar species from elsewhere.
The southeastern United States holds a little over half of North America’s fish, many of which have small geographic ranges, living in one or just a few rivers. Extensive damming and pollution of southern Appalachian mountain streams have exterminated several species and threatened another 80.
Australian mammals
Australia’s extinction rate for mammals is the highest in the world. Scientists estimate that at least 34 mammals have gone extinct since the British colonization of the continent beginning in the late 18th century. (Aboriginal peoples reached Australia at least 42,000 years earlier and, like the Polynesians across the eastern Pacific, also eliminated many native species.) More than 40 other living mammal species in Australia have lost at least half their former ranges, and some survive only on protected offshore islands. In 2019 Australia’s Bramble Cay melomys, a small rat native to a sandy island near Papua New Guinea, was listed as the first mammal to go extinct because of global warming.
Some of the extinctions have taken place in what is now the wheat belt of the southern tip of Western Australia, which retains only 5 percent of its natural woodland vegetation cover. Others have occurred in the southern arid zone, an area of mostly desert dominated by spinifex grass—and very few people. Nonetheless, this is an area where domestic grazing animals have destroyed the natural vegetation and caused extensive soil erosion. Moreover, European rabbits (Oryctolagus cuniculus) introduced in the mid-19th century are competitors of the native mammals, and the red fox (Vulpes vulpes) introduced about the same time has likely destroyed native small-mammal populations even in remote areas. Where foxes are absent in Australia or where their numbers have been controlled, the native mammals seem to have fared better. In addition, farmers and grazers have greatly altered the natural fire regimes—the roles that fire plays in ecosystems in the absence of human intervention—with consequent changes to the vegetation and the animals that depend on it.