Environment

In general, savannas grow in tropical regions 8° to 20° from the Equator. Conditions are warm to hot in all seasons, but significant rainfall occurs for only a few months each year—about October to March in the Southern Hemisphere and April to September in the Northern Hemisphere. Mean annual precipitation is generally 80 to 150 cm (31 to 59 inches), although in some central continental locations it may be as low as 50 cm (20 inches). The dry season is typically longer than the wet season, but it varies considerably, from 2 to 11 months. Mean monthly temperatures are about 10 to 20 °C (50 to 68 °F) in the dry season and 20 to 30 °C (68 to 86 °F) in the wet season.

Savannas may be subdivided into three categories—wet, dry, and thornbush—depending on the length of the dry season. In wet savannas the dry season typically lasts 3 to 5 months, in dry savannas 5 to 7 months, and in thornbush savannas it is even longer. An alternative subdivision recognizes savanna woodland, with trees and shrubs forming a light canopy; tree savanna, with scattered trees and shrubs; shrub savanna, with scattered shrubs; and grass savanna, from which trees and shrubs are generally absent. Other classifications have also been suggested.

In spite of their differences, all savannas share a number of distinguishing structural and functional characteristics. Generally, they are defined as tropical or subtropical vegetation types that have a continuous grass cover occasionally interrupted by trees and shrubs and that are found in areas where bushfires occur and where main growth patterns are closely associated with alternating wet and dry seasons. Savannas can be considered geographic and environmental transition zones between the rainforests of equatorial regions and the deserts of the higher northern and southern latitudes.

The distinction between savannas and other major vegetation types such as tropical deciduous forests (or monsoon forests), scrublands, or grasslands is somewhat arbitrary. The variation from one to another occurs along a continuum, often without distinct boundaries, and the vegetation is dynamic and changeable. The tree component of savannas generally becomes more important as rainfall increases, but other factors such as topography, soil, and grazing intensity all exert influences in complex and variable ways. Dry-season fires, fueled by dried grass, may kill some trees, especially the more-vulnerable young saplings, and, therefore, their severity also greatly affects the nature of savanna vegetation. Because grazing and fire are strongly affected by human activities and have been for thousands of years, humans continue to have a controlling influence on the nature, dynamics, development, structure, and distribution of savannas in many parts of their global range.

Soil fertility is generally rather low in savannas but may show marked small-scale variations. It has been demonstrated in Belize and elsewhere that trees can play a significant role in drawing mineral nutrients up from deeper soil layers. Dead leaves and other tree litter drop to the soil surface near the tree, where they decompose and release nutrients. Soil fertility is thereby greater near trees than in areas between trees.

An unusually large proportion of dead organic matter—approximately 30 percent—is decomposed through the feeding activities of termites. Thus, a significant proportion of released mineral nutrients may be stored for long periods in termite mounds where they are not readily available to plant roots. In savannas in Thailand it has been shown that soil fertility can be markedly improved by mechanically breaking up termite mounds and spreading the material across the soil surface. In Kenya, old termite mounds, which are raised above the general soil surface, also provide flood-proof sites where trees and shrubs can grow, with grassland between them, forming the so-called termite savanna.

Soil factors are particularly important in large areas of relatively moist savanna in South America and Africa. Where soils are poor and, especially, in areas prone to waterlogging in the rainy season because of flatness of the ground or a hardpan close to the surface that roots cannot penetrate, tree growth is not vigorous enough for a closed forest to develop. This is true even where the climate appears to be suitable. A more open savanna vegetation is the result.

Biota

The biota of savannas reflect their derivation from regional biotas; therefore, species vary between regions. The savannas of Asia and tropical America, unlike those of Africa and Australia, are best considered as attenuated rainforests, their natural biotas having strong affinities with those of the wetter environments nearer the Equator in the same regions. Trees in those savannas are usually deciduous, their leaves falling during the dry season. The African savanna biota is fundamentally a grassland assemblage of plants and animals with the addition of scattered trees.