Defense against chemical weapons
On the battlefield
Since World War I the military organizations of all the great powers have acquired defensive equipment to cope with emerging offensive chemical weapons. The first and most important line of defense against chemical agents is the individual protection provided by gas masks and protective clothing and the collective protection of combat vehicles and mobile or fixed shelters. Filters for masks and shelters contain specially treated activated charcoal, to remove vapours, and paper membranes or other materials, to remove particles. Such filters typically can reduce the concentration of chemical agents by a factor of at least 100,000. Masks can be donned in less than 10 seconds and can be worn for long periods, even in sleep. Modern protective overgarments are made of fabric containing activated charcoal or other adsorptive forms of carbon. A complete suit typically weighs about 2 kg (4.4 pounds). The fabric can breathe and pass water-vapour perspiration. In warm weather, periods of heavy exertion in full protective gear would have to be limited in order to avoid heat stress. Also, removing such gear in a contaminated environment would raise the risk of becoming a casualty or fatality, and so gear must be removed within toxic-free shelters after following decontamination procedures at the shelter entrance.
Chemical detectors have been developed to help identify levels and places of contamination. These include chemically treated litmus paper used to determine the presence of chemical agents. Other sensors may include handheld assays, vehicles equipped with scoops and laboratory analysis tools, and both point and standoff sensors. Automatic field alarm systems are employed by some military forces to alert personnel to the presence of chemical agents.
Well-equipped troops are supplied with hypodermic needles filled with antidotes to be administered in the event of toxic poisoning from nerve agents. For example, atropine shots can be injected to fight the effects of nerve gas exposures, and different medicines are available to treat casualties.
A number of methods have been found useful in decontaminating areas and people covered with chemical agents, including spraying with super tropical bleach (chlorinated lime) or washing contaminated surfaces or garments with warm soapy water. The challenge is finding and using a decontamination solution that is strong enough to neutralize the chemical agent without damaging the equipment or harming the personnel.
In some military forces, modular field hospitals have been developed that are stocked with resuscitation devices for respiratory support and other necessary equipment, decontamination solutions, and staff trained to decontaminate chemical warfare casualties. Collective protective shelters, complete with filters for airflow systems, have been provided to shield personnel in an otherwise contaminated area. Such shelters can provide a toxic-free area for personnel to change clothes, get medical attention, sleep, and take care of bodily functions with less danger of exposure to lethal chemicals.
Chemical agents used against unprotected forces can cause high casualties, fear, and confusion. Thus, personnel facing adversaries equipped with chemical weapons must be trained to don individual protective equipment, seek cover in collective protection shelters, avoid contaminated areas, and rapidly decontaminate personnel and equipment that have been exposed. However, such measures, while necessary to protect against chemical attacks, may expose protected forces to greater casualties from conventional weapons fire and lead to a loss of conventional combat effectiveness. Indeed, exercises have shown that conventional combat effectiveness can be decreased by 25 percent or more for military forces compelled to operate in masks, protective overgarments, special gloves, and boots. This is especially true if temperatures are high and forces are required to stay sealed in their gear for many hours or days without relief. Prolonged wearing of individual protective equipment can lead to stress, fatigue, disorientation, confusion, frustration, and irritability. Also, heat can build up and lead to dehydration. Thus, there is generally a trade-off between protecting one’s force through chemical-protection gear and maintaining conventional fighting effectiveness.
In civilian defense
While most military forces have at least some defense against chemical attack, this is not the case for most civilian populations, which typically have no individual protective equipment (masks, overgarments, boots, or gloves) or collective protection shelters. One notable exception is Israel, which has been at war numerous times since its independence in 1948. Israeli citizens are assigned their own gas masks, and new buildings in Israel must contain a reinforced shelter. Israel also conducts civil defense exercises on a regular basis in order to prepare its citizens for attack.
A further problem for almost every country is the presence in most urban centres of storage or manufacturing facilities that contain toxic industrial chemicals and other toxic materials. A conventional attack on such a site would be the functional equivalent of a chemical weapons attack. Most countries do not have adequate security around such areas.
One response to the threat of a chemical weapons attack on civilian society has been the creation of active, well-trained emergency response teams that know how to identify chemical agents, decontaminate areas and people exposed to chemical weapons, and coordinate rescue operations. Cognizant of the growing risk posed by weapons of mass destruction (WMD), the United States in 1998 authorized the creation of 10 National GuardWMD Civil Support Teams (WMD-CST) within its territory; each team was organized, trained, and equipped to handle chemical emergencies in support of local police, firefighters, medical personnel, and other first responders. In subsequent years, dozens of new WMD-CST were authorized, with plans for eventually certifying units for every state and some U.S. protectorates. In addition, the U.S. Centers for Disease Control and Prevention maintains the Strategic National Stockpile, which contains medical supplies and equipment positioned around the country to provide medical help in emergencies, including a chemical weapons attack.
Chemical weapons in history
Antiquity
The use of chemical weapons dates back to antiquity, when warring forces frequently poisoned the water supplies of their adversaries. For example, the Athenians poisoned the wells of their rivals as early as 600 bce, and the Spartans, their chief antagonists, in turn hurled burning sulfur pitch over the walls of Athens in 423 bce. In 673 ce the Byzantines defended Constantinople from the Saracen navy by igniting chemicals (known as Greek fire) floating in the sea. During the Middle Ages, Genghis Khan’s Mongolian forces employed chemical warfare when they catapulted burning pitch and sulfur into cities they besieged.