The wine-making process

Harvesting

Fresh and fully ripened wine grapes are preferred as raw material for wine making. In cool climates, as in northern Europe and the eastern United States, however, lack of sufficient heat to produce ripening may necessitate harvesting the grapes before they reach full maturity. The resulting sugar deficiency may be corrected by direct addition of sugar or by the addition of a grape juice concentrate. Grapes that are allowed to reach full maturity on the vine or that are partially dried by exposure to sun after harvesting are high in sugar content as a result of natural moisture loss (partial raisining as in the production of Málaga wines in Spain). A beneficent mold, Botrytis cinera, may also be employed to hasten moisture loss (as in the production of Sauternes in France). These grapes are used to produce sweet table wines. Special methods employed to produce these wines include the addition of sulfur dioxide, the use of small fermenting vessels during processing, or the use of cool temperatures—the objective being to stop the fermentation before all the sugar is fermented.

Because of the effect upon grape composition, proper timing of the harvest is of great importance. Premature harvesting results in thin, low-alcohol wines; very late harvesting may yield high-alcohol, low-acid wines.

Harvesting may be completed in one picking or in several. The grape clusters are cut from the vine and placed in buckets or boxes and then transferred to larger containers (large tubs in Europe, metal gondola trucks in California and elsewhere) for transport to the winery. Mechanical harvesting systems, based on shaking the berries from the clusters or on breaking the stems, are widely used in California, Australia, France, and elsewhere.

At the winery the grapes may be dumped directly into the crusher or may be unloaded into a sump and carried to the crusher by a continuous conveyor system.

Crushing

In modern mechanized wine production, the grapes are normally crushed and stemmed at the same time by a crusher-stemmer, usually consisting of a perforated cylinder containing paddles revolving at 600 to 1,200 revolutions per minute. The grape berries are crushed and fall through the cylinder perforations; most of the stems pass out of the end of the cylinder. A roller-crusher may also be used. Ancient methods of crushing with the feet or treading with shoes are rare.

When red grapes are used to produce a white juice, as in the Champagne region of France, crushing is accomplished by pressing.

Red grapes are sometimes introduced whole into tanks, which are then closed. The resulting respiration in the fruit, consuming oxygen and producing carbon dioxide, kills the skin cells, which lose their semipermeability, allowing easy colour extraction. There is also some intracellular respiration of malic acid. This respiration process is slow and in warm regions may result in wines of low colour and acidity and distinctive odour.

Juice separation

When the juice of white grapes is processed or a white wine is desired, the juice is usually separated from the skins and seeds immediately after crushing. Occasionally, to increase flavour extraction, the white skins may be allowed to remain in contact with the juice for 12 to 24 hours, but this procedure also increases colour extraction, sometimes undesirably.

Two main procedures are employed to separate the juice from the solids. Much of the juice may be drained off by placing the crushed grapes in a container having a false bottom and often false sides. This juice is called the free run juice, and the mass of crushed grapes is called the must, a term also used to refer to the unfermented grape juice, with or without skins.

More commonly, the crushed grapes are placed in a press. The traditional basket press is gradually being supplanted by a horizontal basket press, applying pressure from both ends. Continuous screw-type presses are also employed, especially for drained pulp. The Willmes press, widely employed for white musts, consists of a perforated cylinder containing an inflatable tube. The crushed grapes are introduced into the cylinder, and the tube is inflated, pressing the grapes against the rotating cylinder sides and forcing the juice out through the perforations. Several pressings may be made without the extensive hand labour required for basket presses.

Continuous presses are practical for production of red wines, in which skins, seeds, and juice are all fermented together. Separation of the juice is simplified because fermentation makes the skins less slippery, and the amount of free run juice obtained is, therefore, much greater than for unfermented musts. Separation of the less slippery solids from the juice by pressing is also simplified.

The drained pomace (crushed mass remaining after extraction of the juice from the grapes), from white or red fermentations, may be used to provide distilling material for production of wine spirits. Water is usually added, the fermentation is completed, and the low-alcohol wine is drained off. The pomace may be further washed and pressed or may be distilled directly in special stills.

Must treatment

White musts are often turbid and cloudy, and settling is desirable to allow separation of the suspended materials. Such measures as prior addition of sulfur dioxide and lowering of the temperature during settling help prevent fermentation and allow the suspended material to settle normally. In many areas wineries centrifuge the white must to remove the solids. In this process a strong pulling force is created by circular motion. Musts are sometimes pasteurized, inactivating undesirable enzymes that cause browning. The addition of pectin-splitting enzymes to the musts to facilitate pressing is uncommon. Bentonite, a type of clay, may be added to musts to reduce total nitrogen content and facilitate clarification.

There is renewed interest in the prefermentation heat treatment of red musts to extract colour and deactivate enzymes. This process, when performed rapidly at moderate temperatures and without undue oxidation, may be particularly desirable in the production of red sweet wines, which employs short periods of fermentation on the skins, and for use with red grapes that have been attacked by the parasitic fungus Botrytis cinera, which contains high amounts of the polyphenol oxidase type of enzymes that cause browning.