Cosmology

Cosmology is the scientific study of the universe as a unified whole, from its earliest moments through its evolution to its ultimate fate. The currently accepted cosmological model is the big bang. In this picture, the expansion of the universe started in an intense explosion 13.8 billion years ago. In this primordial fireball, the temperature exceeded one trillion K, and most of the energy was in the form of radiation. As the expansion proceeded (accompanied by cooling), the role of the radiation diminished, and other physical processes dominated in turn. Thus, after about three minutes, the temperature had dropped to the one-billion-K range, making it possible for nuclear reactions of protons to take place and produce nuclei of deuterium and helium. (At the higher temperatures that prevailed earlier, these nuclei would have been promptly disrupted by high-energy photons.) With further expansion, the time between nuclear collisions had increased and the proportion of deuterium and helium nuclei had stabilized. After a few hundred thousand years, the temperature must have dropped sufficiently for electrons to remain attached to nuclei to constitute atoms. Galaxies are thought to have begun forming after a few million years, but this stage is very poorly understood. Star formation probably started much later, after at least a billion years, and the process continues today.

Observational support for this general model comes from several independent directions. The expansion has been documented by the redshifts observed in the spectra of galaxies. Furthermore, the radiation left over from the original fireball would have cooled with the expansion. Confirmation of this relic energy came in 1965 with one of the most striking cosmic discoveries of the 20th century—the observation, at short radio wavelengths, of a widespread cosmic radiation corresponding to a temperature of almost 3 K (about −270 °C [−454 °F]). The shape of the observed spectrum is an excellent fit with the theoretical Planck blackbody spectrum. (The present best value for this temperature is 2.735 K, but it is still called three-degree radiation or the cosmic microwave background.) The spectrum of this cosmic radio noise peaks at approximately a one-millimetre wavelength, which is in the far infrared, a difficult region to observe from Earth; however, the spectrum has been well mapped by the Cosmic Background Explorer (COBE), Wilkinson Microwave Anisotropy Probe, and Planck satellites. Additional support for the big bang theory comes from the observed cosmic abundances of deuterium and helium. Normal stellar nucleosynthesis cannot produce their measured quantities, which fit well with calculations of production during the early stages of the big bang.

Early surveys of the cosmic background radiation indicated that it is extremely uniform in all directions (isotropic). Calculations have shown that it is difficult to achieve this degree of isotropy unless there was a very early and rapid inflationary period before the expansion settled into its present mode. Nevertheless, the isotropy posed problems for models of galaxy formation. Galaxies originate from turbulent conditions that produce local fluctuations of density, toward which more matter would then be gravitationally attracted. Such density variations were difficult to reconcile with the isotropy required by observations of the 3 K radiation. This problem was solved when the COBE satellite was able to detect the minute fluctuations in the cosmic background from which the galaxies formed.

The very earliest stages of the big bang are less well understood. The conditions of temperature and pressure that prevailed prior to the first microsecond require the introduction of theoretical ideas of subatomic particle physics. Subatomic particles are usually studied in laboratories with giant accelerators, but the region of particle energies of potential significance to the question at hand lies beyond the range of accelerators currently available. Fortunately, some important conclusions can be drawn from the observed cosmic helium abundance, which is dependent on conditions in the early big bang. The observed helium abundance sets a limit on the number of families of certain types of subatomic particles that can exist.

The age of the universe can be calculated in several ways. Assuming the validity of the big bang model, one attempts to answer the question: How long has the universe been expanding in order to have reached its present size? The numbers relevant to calculating an answer are Hubble’s constant (i.e., the current expansion rate), the density of matter in the universe, and the cosmological constant, which allows for change in the expansion rate. In 2003 a calculation based on a fresh determination of Hubble’s constant yielded an age of 13.7 billion ± 200 million years, although the precise value depends on certain assumed details of the model used. Independent estimates of stellar ages have yielded values less than this, as would be expected, but other estimates, based on supernova distance measurements, have arrived at values of about 15 billion years, still consistent, within the errors. In the big bang model the age is proportional to the reciprocal of Hubble’s constant, hence the importance of determining H as reliably as possible. For example, a value for H of 100 km/sec/Mpc would lead to an age less than that of many stars, a physically unacceptable result.

A small minority of astronomers have developed alternative cosmological theories that are seriously pursued. The overwhelming professional opinion, however, continues to support the big bang model.

Finally, there is the question of the future behaviour of the universe: Is it open? That is to say, will the expansion continue indefinitely? Or is it closed, such that the expansion will slow down and eventually reverse, resulting in contraction? (The final collapse of such a contracting universe is sometimes termed the “big crunch.”) The density of the universe seems to be at the critical density; that is, the universe is neither open nor closed but “flat.” So-called dark energy, a kind of repulsive force that is now believed to be a major component of the universe, appears to be the decisive factor in predictions of the long-term fate of the cosmos. If this energy is a cosmological constant (as proposed in 1917 by Albert Einstein to correct certain problems in his model of the universe), then the result would be a “big chill.” In this scenario, the universe would continue to expand, but its density would decrease. While old stars would burn out, new stars would no longer form. The universe would become cold and dark. The dark (nonluminous) matter component of the universe, whose composition remains unknown, is not considered sufficient to close the universe and cause it to collapse; it now appears to contribute only a fourth of the density needed for closure.

An additional factor in deciding the fate of the universe might be the mass of neutrinos. For decades the neutrino had been postulated to have zero mass, although there was no compelling theoretical reason for this to be so. From the observation of neutrinos generated in the Sun and other celestial sources such as supernovas, in cosmic-ray interactions with Earth’s atmosphere, and in particle accelerators, investigators have concluded that neutrinos have some mass, though only an extremely small fraction of the mass of an electron. Although there are vast numbers of neutrinos in the universe, the sum of such small neutrino masses appears insufficient to close the universe.