The techniques of astronomy
Astronomical observations involve a sequence of stages, each of which may impose constraints on the type of information attainable. Radiant energy is collected with telescopes and brought to a focus on a detector, which is calibrated so that its sensitivity and spectral response are known. Accurate pointing and timing are required to permit the correlation of observations made with different instrument systems working in different wavelength intervals and located at places far apart. The radiation must be spectrally analyzed so that the processes responsible for radiation emission can be identified.
Telescopic observations
Before Galileo Galilei’s use of telescopes for astronomy in 1609, all observations were made by naked eye, with corresponding limits on the faintness and degree of detail that could be seen. Since that time, telescopes have become central to astronomy. Having apertures much larger than the pupil of the human eye, telescopes permit the study of faint and distant objects. In addition, sufficient radiant energy can be collected in short time intervals to permit rapid fluctuations in intensity to be detected. Further, with more energy collected, a spectrum can be greatly dispersed and examined in much greater detail.
Optical telescopes are either refractors or reflectors that use lenses or mirrors, respectively, for their main light-collecting elements (objectives). Refractors are effectively limited to apertures of about 100 cm (approximately 40 inches) or less because of problems inherent in the use of large glass lenses. These distort under their own weight and can be supported only around the perimeter; an appreciable amount of light is lost due to absorption in the glass. Large-aperture refractors are very long and require large and expensive domes. The largest modern telescopes are all reflectors, the very largest composed of many segmented components and having overall diameters of about 10 metres (33 feet). Reflectors are not subject to the chromatic problems of refractors, can be better supported mechanically, and can be housed in smaller domes because they are more compact than the long-tube refractors.
The angular resolving power (or resolution) of a telescope is the smallest angle between close objects that can be seen clearly to be separate. Resolution is limited by the wave nature of light. For a telescope having an objective lens or mirror with diameter D and operating at wavelength λ, the angular resolution (in radians) can be approximately described by the ratio λ/D. Optical telescopes can have very high intrinsic resolving powers; in practice, however, these are not attained for telescopes located on Earth’s surface, because atmospheric effects limit the practical resolution to about one arc second. Sophisticated computing programs can allow much-improved resolution, and the performance of telescopes on Earth can be improved through the use of adaptive optics, in which the surface of the mirror is adjusted rapidly to compensate for atmospheric turbulence that would otherwise distort the image. In addition, image data from several telescopes focused on the same object can be merged optically and through computer processing to produce images having angular resolutions much greater than that from any single component.
The atmosphere does not transmit radiation of all wavelengths equally well. This restricts astronomy on Earth’s surface to the near ultraviolet, visible, and radio regions of the electromagnetic spectrum and to some relatively narrow “windows” in the nearer infrared. Longer infrared wavelengths are strongly absorbed by atmospheric water vapour and carbon dioxide. Atmospheric effects can be reduced by careful site selection and by carrying out observations at high altitudes. Most major optical observatories are located on high mountains, well away from cities and their reflected lights. Infrared telescopes have been located atop Mauna Kea in Hawaii, in the Atacama Desert in Chile, and in the Canary Islands, where atmospheric humidity is very low. Airborne telescopes designed mainly for infrared observations—such as on the Stratospheric Observatory for Infrared Astronomy (SOFIA), a jet aircraft fitted with astronomical instruments—operate at an altitude of about 12 km (40,000 feet) with flight durations limited to a few hours. Telescopes for infrared, X-ray, and gamma-ray observations have been carried to altitudes of more than 30 km (100,000 feet) by balloons. Higher altitudes can be attained during short-duration rocket flights for ultraviolet observations. Telescopes for all wavelengths from infrared to gamma rays have been carried by robotic spacecraft observatories such as the Hubble Space Telescope and the Wilkinson Microwave Anisotropy Probe, while cosmic rays have been studied from space by the Advanced Composition Explorer.
Angular resolution better than one milliarcsecond has been achieved at radio wavelengths by the use of several radio telescopes in an array. In such an arrangement, the effective aperture then becomes the greatest distance between component telescopes. For example, in the Very Large Array (VLA), operated near Socorro, New Mexico, by the National Radio Astronomy Observatory, 27 movable radio dishes are set out along tracks that extend for nearly 21 km. In another technique, called very long baseline interferometry (VLBI), simultaneous observations are made with radio telescopes thousands of kilometres apart; this technique requires very precise timing.
Earth is a moving platform for astronomical observations. It is important that the specification of precise celestial coordinates be made in ways that correct for telescope location, the position of Earth in its orbit around the Sun, and the epoch of observation, since Earth’s axis of rotation moves slowly over the years. Time measurements are now based on atomic clocks rather than on Earth’s rotation, and telescopes can be driven continuously to compensate for the planet’s rotation, so as to permit tracking of a given astronomical object.
Use of radiation detectors
Although the human eye remains an important astronomical tool, detectors capable of greater sensitivity and more rapid response are needed to observe at visible wavelengths and, especially, to extend observations beyond that region of the electromagnetic spectrum. Photography was an essential tool from the late 19th century until the 1980s, when it was supplanted by charge-coupled devices (CCDs). However, photography still provides a useful archival record. A photograph of a particular celestial object may include the images of many other objects that were not of interest when the picture was taken but that become the focus of study years later. When quasars were discovered in 1963, for example, photographic plates exposed before 1900 and held in the Harvard College Observatory were examined to trace possible changes in position or intensity of the radio object newly identified as quasar 3C 273. Also, major photographic surveys, such as those of the National Geographic Society and the Palomar Observatory, can provide a historical base for long-term studies.
Photographic film converted only a few percent of the incident photons into images, whereas CCDs have efficiencies of nearly 100 percent. CCDs can be used for a wide range of wavelengths, from the X-ray into the near-infrared. Gamma rays are detectable through their Compton scattering, electron-positron pair production, or Cerenkov radiation. For infrared wavelengths longer than a few microns, semiconductor detectors that operate at very low (cryogenic) temperatures are used. Reception of radio waves is based on the production of a small voltage in an antenna rather than on photon counting.
Spectroscopy involves measuring the intensity of the radiation as a function of wavelength or frequency. In some detectors, such as those for X-rays and gamma rays, the energy of each photon can be measured directly. For low-resolution spectroscopy, broadband filters suffice to select wavelength intervals. Greater resolution can be obtained with prisms, gratings, and interferometers. (For additional information on astronomical radiation detectors, see telescope: Advances in auxiliary instrumentation.)